Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.
Great example of a double ender which exudes character. very solidly built. Little Diesel Yanmar pushes it along well while sipping fuel. New cushions throughout cabin and cockpit. sails in fair to good shape. includes custom built trailer and off-season cover.
Equipment: new ground tackle, USCG required safety equipment.
The theoretical maximum speed that a displacement hull can move efficiently through the water is determined by it's waterline length and displacement. It may be unable to reach this speed if the boat is underpowered or heavily loaded, though it may exceed this speed given enough power. Read more.
Classic hull speed formula:
Hull Speed = 1.34 x √LWL
A more accurate formula devised by Dave Gerr in The Propeller Handbook replaces the Speed/Length ratio constant of 1.34 with a calculation based on the Displacement/Length ratio.
Max Speed/Length ratio = 8.26 ÷ Displacement/Length ratio.311
Hull Speed = Max Speed/Length ratio x √LWL
A measure of the power of the sails relative to the weight of the boat. The higher the number, the higher the performance, but the harder the boat will be to handle. This ratio is a "non-dimensional" value that facilitates comparisons between boats of different types and sizes. Read more.
SA/D = SA ÷ (D ÷ 64)2/3
A measure of the stability of a boat's hull that suggests how well a monohull will stand up to its sails. The ballast displacement ratio indicates how much of the weight of a boat is placed for maximum stability against capsizing and is an indicator of stiffness and resistance to capsize.
Ballast / Displacement * 100
A measure of the weight of the boat relative to it's length at the waterline. The higher a boat’s D/L ratio, the more easily it will carry a load and the more comfortable its motion will be. The lower a boat's ratio is, the less power it takes to drive the boat to its nominal hull speed or beyond. Read more.
D/L = (D ÷ 2240) ÷ (0.01 x LWL)³
This ratio assess how quickly and abruptly a boat’s hull reacts to waves in a significant seaway, these being the elements of a boat’s motion most likely to cause seasickness. Read more.
Comfort ratio = D ÷ (.65 x (.7 LWL + .3 LOA) x Beam1.33)
This formula attempts to indicate whether a given boat might be too wide and light to readily right itself after being overturned in extreme conditions. Read more.
CSV = Beam ÷ ³√(D / 64)
From BlueWaterBoats.org:
The first of the boats to carry the legendary Pacific Seacraft name, the 25 was penned by Henry Mohrschladt and built from humble beginnings in his garage in 1976. This tiny double-ender was fashioned after the workboats of the 19th century which were able to carry heavy loads, sail quickly and safely in a broad range of weather. By modern standards the little 25-footer is considered quite slow, but to make up for this she is immensely strong and seaworthy, low maintenance, and perfectly capable of being trailered to a cruising ground of your choice.
It’s been said the Pacific Seacraft 25 looks much like a blend between fishing vessel and a ship’s lifeboat encapsulating a traditional old world feel. Beneath the waterline is a full keel with a forefoot cutaway which blesses her with fine tracking abilities combined with a hefty rudder hung from the double-ender’s stern post. The bottom of the keel has a long enough straight section to allow her to sit upright without nosing forwards should she be tied up while the tide is out.
The boats were available in cutter and sloop rig. The cutter rigged boats had a small bowsprit of less than two feet in length, the slot between the headsail and the stay sail which anchors at the stem head is quite small.
Under sail the helm is light and tracking is excellent. Light air performance is abysmal, more canvas area is desperately needed, but in winds above 8 knots she can move surprisingly well with hull speed attained in 12-14 knots of breeze. She’s initially tender before stiffening at about 10 degrees of heel with the first reef typically thrown in above 16 knots. In rough conditions she is known to heave-to particularly well with a reefed staysail and triple reefed main.
The first hull was built by Pacific Seacraft’s two founders Mike Howarth and Henry Mohrschladt in Henry’s garage in Orange County, California. The boat was promptly taken to a local boat show where it sold immediately and created a good deal of interest. Production eventually moved from the garage to the company’s first official premises in Santa Ana on South Susan Street when the residential neighbours didn’t take kindly to the smell and sounds of fiberglass boatbuilding.
Early Pacific Seacraft 25s were sloop rigged without bowsprits and their associated cutter rig. Many options were on offer and you’ll find numerous variations on the market today. Options included various hull colors, teak sea-hoods for the hatches, teak decks, cockpit grates, and cutter rigs in the later models. There was even an option for a private forward cabin separated with a full bulkhead and a finely crafted door. Apparently four boats were built with swing keels and additionally a few boats were owner-finished.
Production continued through until 1981 with the last recorded boat being hull number #257 for a total production count of 157. The Pacific Seacraft 25 was eventually phased out when the company introduced Bruce Bingham’s Flicka 20 to its lineup of yachts. The new 20 footer’s standing headroom and clever use of space in her open cabin interior proved to be important factors. The molds for the Pacific Seacraft 25 were eventually shipped to Japan, but their ultimate fate remains unknown.
The hulls were built of hand-laid fiberglass with lengthwise mock-planking molded in, while the deck and cabin were of fiberglass cored in balsa to keep the weight down. The cabin trunk design is quite boxy and despite its apparent height the internal headroom only manages five feet two inches.
There is a small gunwale that’s two inches at the bow which reduces to nothing at the cockpit, topped with a wide caprail of teak. The sidedecks are comfortably wide that gets wider further forward of the boat.
The cockpit has a good size and shape for a seagoing boat possessing a secure feel. It has comfortably rounded corners for lounging, a roomy stern lazarette, and a spacious port-side locker. The cockpit has two drains on the forward edge which are adequate, though for serious offshore work 4 drains would be better.
Below the cockpit floor is a large hatch that can be unsealed and detached by undoing 25 screws. It’s a large area to keep well sealed and watertight but it does allow for unprecedented access to the engine and stuffing box. The standard engine is a single cylinder 8-horsepower Yanmar diesel which fits snugly under the cockpit. Access to the engine from behind the companionway steps is minimal – enough for a peek, but that is all.
A deep and narrow fuel tank is located in bilge just forward of the engine area – it’s a great spot for space efficiency and for keeping a low center of gravity. Unfortunately, as with early Pacific Seacraft practice, they were made of aluminum, and being located in the bilge, despite having runners under it, the tank would typically develop saltwater corrosion and leaks six to eight years into its life. The job of replacing these tanks has become infamous in the industry.
The mast is stepped onto a tabernacle that allows it to be dropped or raised easily, this area is supported by a wooden compression post that transfers the load of the rig onto the keel.
Belowdecks is accommodations for up to five, it’s unlikely you’ll go cruising with more than two people on a boat this size, but the extra berths may be handy for short coastal trips. The forepeak has a small double berth that’s sized better for children, also in the forepeak is a head and hanging locker opposite each other on either side of the hull. A curtain separates this area from the saloon.
The galley is generously sized and well laid out with fresh and seawater hand pumps, a sink, and originally sold with a pressure kerosene or alcohol two burner stove. Opposite is a dinette and settees that face forward and aft that can seat up to three. The dinette can be lowered to make room for a double berth and further aft is a seagoing quarter-berth.
Six bronze opening portlights and an overhead hatch allows for plenty of light and ventilation to enter the cabin. The joinerwork is superb and up to the standard set by Pacific Seacraft on all of their vessels.
» Pacific Seacraft owner review by Ron Chappel, Good Old Boat Magazine, March/April 2004
» Twenty Small Sailboats to Take you Anywhere by John Vigor, p105
» Pacific Seacraft 25 Owners Forum, messages, information and photos.
This listing is presented by SailboatListings.com. Visit their website for more information or to contact the seller.
Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.
©2025 Sea Time Tech, LLC
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.