Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.
1976 C&C 38 MK II
It is time to let this gem go as we have purchased a larger boat! She is priced to sell at $25,000 CAD. She was a liveaboard and is outfitted with a Dickenson diesel drip stove for heat with a separate 10 gallon diesel tank. Engine is a universal atomic 4 in great condition. Converted to an electric start. The galley features a gimballed alcohol stove. It has a bar fridge installed and an ice box converted to a fridge (needs repair).
Full compliment of sails included. Main, storm jib, light wind Genoa, and spinnaker. All sails are in good shape.
Details of the boat are below.
Hull Type: Fin w/spade rudder Rigging Type: Masthead Sloop LOA: 37.58 ft / 11.45 m LWL: 29.58 ft / 9.02 m S.A. (reported): 674.00 ft / 62.62 m Beam: 12.00 ft / 3.66 m Displacement: 14,700.00 lb / 6,668 kg Ballast: 6,800.00 lb / 3,084 kg Max Draft: 6.08 ft / 1.85 m Construction: FG Ballast Type: Lead First Built: 1975 # Built: 98 Builder: C&C Yachts Designer: C&C
Equipment: VHF radio Built-in stereo with speakers inside and out Autohelm Depth sounder Full compliment of sails. Main, storm jib, light wind Genoa, spinnaker and whisker pole.
The theoretical maximum speed that a displacement hull can move efficiently through the water is determined by it's waterline length and displacement. It may be unable to reach this speed if the boat is underpowered or heavily loaded, though it may exceed this speed given enough power. Read more.
Classic hull speed formula:
Hull Speed = 1.34 x √LWL
A more accurate formula devised by Dave Gerr in The Propeller Handbook replaces the Speed/Length ratio constant of 1.34 with a calculation based on the Displacement/Length ratio.
Max Speed/Length ratio = 8.26 ÷ Displacement/Length ratio.311
Hull Speed = Max Speed/Length ratio x √LWL
A measure of the power of the sails relative to the weight of the boat. The higher the number, the higher the performance, but the harder the boat will be to handle. This ratio is a "non-dimensional" value that facilitates comparisons between boats of different types and sizes. Read more.
SA/D = SA ÷ (D ÷ 64)2/3
A measure of the stability of a boat's hull that suggests how well a monohull will stand up to its sails. The ballast displacement ratio indicates how much of the weight of a boat is placed for maximum stability against capsizing and is an indicator of stiffness and resistance to capsize.
Ballast / Displacement * 100
A measure of the weight of the boat relative to it's length at the waterline. The higher a boat’s D/L ratio, the more easily it will carry a load and the more comfortable its motion will be. The lower a boat's ratio is, the less power it takes to drive the boat to its nominal hull speed or beyond. Read more.
D/L = (D ÷ 2240) ÷ (0.01 x LWL)³
This ratio assess how quickly and abruptly a boat’s hull reacts to waves in a significant seaway, these being the elements of a boat’s motion most likely to cause seasickness. Read more.
Comfort ratio = D ÷ (.65 x (.7 LWL + .3 LOA) x Beam1.33)
This formula attempts to indicate whether a given boat might be too wide and light to readily right itself after being overturned in extreme conditions. Read more.
CSV = Beam ÷ ³√(D / 64)
Most of changes made on the C&C 38-2 over the earlier model involved IOR optimization.
This listing is presented by SailboatListings.com. Visit their website for more information or to contact the seller.
Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.
©2024 Sea Time Tech, LLC
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.