Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.

We will occasionally send you relevant updates. You can opt out or contact us any time.
  • 1 / 9
  • 2 / 9
  • 3 / 9
  • 4 / 9
  • 5 / 9
  • 6 / 9
  • 7 / 9
  • 8 / 9
  • 9 / 9

1999 Taipan 4.9 Sloop, AHPC

Listed
Expired
€4,700 EUR

Seller's Description

Built 11/99, 102 kg (!), 13,7,sqm mainsail, 4,2 sqm roller furling jib (Dacron red-brown), new (!) gennaker 17 sqm with spi snuffer, 2,34 m wide, mast height 8,5 m, full tarpaulin, slip car, hull supports. Hulls are made of GRP with double layer Kevlar and are tight. Carbon rudder blades and centerboards. No gelcoat cracks.

A Cat with a history: when Glen Ashby came to Europe for one of his A-Cat championship regattas in 2001, he still had room at Shipping for the Taipan he had assembled himself and sailed with his girlfriend. He brought it with him to sell here. The Taipan was so excellently tuned that I could not resist. To this day, I am thrilled with the ease with which the Taipan handles on the water - and also on land. I have never regretted the purchase and have had a lot of fun with it for many years - both alone and in pairs. It is the ideal Cat for mixed crew.

Contakt: Heiner Wolfshöfer, Cat-Stadl, T. +49 (0) 9831-50169, email: catstadl@t-online.de or Peter Voss, Tel. +49 (0) 17664218866

Advertisement

Specs

Designers
?
Builders
?
Associations
?
# Built
?
Hull
Catamaran
Keel
?
Rudder
Twin
Construction
?

Dimensions

Length Overall
16 0 / 4.9 m
Waterline Length
?
Beam
7 6 / 2.3 m
Draft
?
Displacement
220 lb / 102 kg
Ballast
?

Rig and Sails

Type
Cat
Reported Sail Area
?
Total Sail Area
?
Mainsail
Sail Area
147′² / 13.7 m²
P
?
E
?
Air Draft
?
Foresail
Sail Area
45′² / 4.2 m²
I
?
J
?
Forestay Length
?

Auxilary Power

Make
?
Model
?
HP
?
Fuel Type
?
Fuel Capacity
?
Engine Hours
?

Accomodations

Water Capacity
?
Holding Tank Capacity
?
Headroom
?
Cabins
?

Calculations

Hull Speed
?

Hull Speed

The theoretical maximum speed that a displacement hull can move efficiently through the water is determined by it's waterline length and displacement. It may be unable to reach this speed if the boat is underpowered or heavily loaded, though it may exceed this speed given enough power. Read more.

Formula

Classic hull speed formula:

Hull Speed = 1.34 x √LWL

A more accurate formula devised by Dave Gerr in The Propeller Handbook replaces the Speed/Length ratio constant of 1.34 with a calculation based on the Displacement/Length ratio.

Max Speed/Length ratio = 8.26 ÷ Displacement/Length ratio.311
Hull Speed = Max Speed/Length ratio x √LWL

?
Classic formula: ?
Sail Area/Displacement
?

Sail Area / Displacement Ratio

A measure of the power of the sails relative to the weight of the boat. The higher the number, the higher the performance, but the harder the boat will be to handle. This ratio is a "non-dimensional" value that facilitates comparisons between boats of different types and sizes. Read more.

Formula

SA/D = SA ÷ (D ÷ 64)2/3

  • SA: Sail area in square feet, derived by adding the mainsail area to 100% of the foretriangle area (the lateral area above the deck between the mast and the forestay).
  • D: Displacement in pounds.
?
<16: under powered
16-20: good performance
>20: high performance
Ballast/Displacement
?

Ballast / Displacement Ratio

A measure of the stability of a boat's hull that suggests how well a monohull will stand up to its sails. The ballast displacement ratio indicates how much of the weight of a boat is placed for maximum stability against capsizing and is an indicator of stiffness and resistance to capsize.

Formula

Ballast / Displacement * 100

?
<40: less stiff, less powerful
>40: stiffer, more powerful
Displacement/Length
?

Displacement / Length Ratio

A measure of the weight of the boat relative to it's length at the waterline. The higher a boat’s D/L ratio, the more easily it will carry a load and the more comfortable its motion will be. The lower a boat's ratio is, the less power it takes to drive the boat to its nominal hull speed or beyond. Read more.

Formula

D/L = (D ÷ 2240) ÷ (0.01 x LWL)³

  • D: Displacement of the boat in pounds.
  • LWL: Waterline length in feet
?
<100: ultralight
100-200: light
200-300: moderate
300-400: heavy
>400: very heavy
Comfort Ratio
?

Comfort Ratio

This ratio assess how quickly and abruptly a boat’s hull reacts to waves in a significant seaway, these being the elements of a boat’s motion most likely to cause seasickness. Read more.

Formula

Comfort ratio = D ÷ (.65 x (.7 LWL + .3 LOA) x Beam1.33)

  • D: Displacement of the boat in pounds
  • LWL: Waterline length in feet
  • LOA: Length overall in feet
  • Beam: Width of boat at the widest point in feet
?
<20: lightweight racing boat
20-30: coastal cruiser
30-40: moderate bluewater cruising boat
40-50: heavy bluewater boat
>50: extremely heavy bluewater boat
Capsize Screening
?

Capsize Screening Formula

This formula attempts to indicate whether a given boat might be too wide and light to readily right itself after being overturned in extreme conditions. Read more.

Formula

CSV = Beam ÷ ³√(D / 64)

  • Beam: Width of boat at the widest point in feet
  • D: Displacement of the boat in pounds
?
<2: better suited for ocean passages
>2: better suited for coastal cruising
We will occasionally email you about new features or updates. You can opt out or contact us any time.
Advertisement

Embed

Embed

Embed this page on your own website by copying and pasting this code.

Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.

We will occasionally send you relevant updates. You can opt out or contact us any time.
Measurements:

©2024 Sea Time Tech, LLC

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.