Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.
2011 Laser 14’ sailboat. ILCA class legal, fully equipped and ready to race.
Boat was purchased in 2011 and used for a few events in Southern California by its prior owner, after which it sat unused until I purchased it in the Fall of 2020.
Boat is dry (no leaks) and is in very good condition with only a some minor gel coat chips on the bow and cosmetic marks on the rails / topsides.
Equipment: Package includes:
2 lower rig sections (1 full rig, 1 radial), 1 upper rig section (all rig sections are aluminum) GRP/Fiberglass centerboard Black Diamond carbon tiller extension All new running rigging (2021) 3 sails (virtually unused old style full rig, practice radial sail and practice full rig sail) Upgraded vang, cunningham and outhaul New Ronstan 55mm mainsheet block (RF56100) Bag for spars (holds three spar sections) Blade bag Top and bottom covers
Kitty Hawk trailer (with title) Seitech dolly
The theoretical maximum speed that a displacement hull can move efficiently through the water is determined by it's waterline length and displacement. It may be unable to reach this speed if the boat is underpowered or heavily loaded, though it may exceed this speed given enough power. Read more.
Classic hull speed formula:
Hull Speed = 1.34 x √LWL
A more accurate formula devised by Dave Gerr in The Propeller Handbook replaces the Speed/Length ratio constant of 1.34 with a calculation based on the Displacement/Length ratio.
Max Speed/Length ratio = 8.26 ÷ Displacement/Length ratio.311
Hull Speed = Max Speed/Length ratio x √LWL
A measure of the power of the sails relative to the weight of the boat. The higher the number, the higher the performance, but the harder the boat will be to handle. This ratio is a "non-dimensional" value that facilitates comparisons between boats of different types and sizes. Read more.
SA/D = SA ÷ (D ÷ 64)2/3
A measure of the stability of a boat's hull that suggests how well a monohull will stand up to its sails. The ballast displacement ratio indicates how much of the weight of a boat is placed for maximum stability against capsizing and is an indicator of stiffness and resistance to capsize.
Ballast / Displacement * 100
A measure of the weight of the boat relative to it's length at the waterline. The higher a boat’s D/L ratio, the more easily it will carry a load and the more comfortable its motion will be. The lower a boat's ratio is, the less power it takes to drive the boat to its nominal hull speed or beyond. Read more.
D/L = (D ÷ 2240) ÷ (0.01 x LWL)³
This ratio assess how quickly and abruptly a boat’s hull reacts to waves in a significant seaway, these being the elements of a boat’s motion most likely to cause seasickness. Read more.
Comfort ratio = D ÷ (.65 x (.7 LWL + .3 LOA) x Beam1.33)
This formula attempts to indicate whether a given boat might be too wide and light to readily right itself after being overturned in extreme conditions. Read more.
CSV = Beam ÷ ³√(D / 64)
Same hull as the LASER and LASER RADIAL, but with a smaller sail plan making it more manageable for lighter sailors (under 125 lbs.).
This listing is presented by SailboatListings.com. Visit their website for more information or to contact the seller.
Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.
©2024 Sea Time Tech, LLC
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.