Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.

We will occasionally send you relevant updates. You can opt out or contact us any time.
1985
Designers
J.R. (Rod) Macalpine-Downie
Dick Gibbs
Builder
Lockley Newport Boats
Association
Buccaneer 18 Class Association
# Built
?
Hull
Monohull Dinghy
Keel
Centerboard
Rudder
?
Construction
FG Wood

Dimensions

Length Overall
18 0 / 5.5 m
Waterline Length
16 8 / 5.1 m
Beam
6 0 / 1.8 m
Draft
0 7 / 0.2 m 3 10 / 1.2 m
Displacement
500 lb / 227 kg
Ballast
?

Rig and Sails

Type
Sloop
Reported Sail Area
175′² / 16.3 m²
Total Sail Area
?
Mainsail
Sail Area
?
P
?
E
?
Air Draft
?
Foresail
Sail Area
?
I
?
J
?
Forestay Length
?

Auxilary Power

Make
?
Model
?
HP
?
Fuel Type
?
Fuel Capacity
?

Accomodations

Water Capacity
?
Holding Tank Capacity
?
Headroom
?
Cabins
?

Calculations

Hull Speed
10.1 kn
Classic: 5.47 kn

Hull Speed

The theoretical maximum speed that a displacement hull can move efficiently through the water is determined by it's waterline length and displacement. It may be unable to reach this speed if the boat is underpowered or heavily loaded, though it may exceed this speed given enough power. Read more.

Formula

Classic hull speed formula:

Hull Speed = 1.34 x √LWL

A more accurate formula devised by Dave Gerr in The Propeller Handbook replaces the Speed/Length ratio constant of 1.34 with a calculation based on the Displacement/Length ratio.

Max Speed/Length ratio = 8.26 ÷ Displacement/Length ratio.311
Hull Speed = Max Speed/Length ratio x √LWL

10.1 knots
Classic formula: 5.47 knots
Sail Area/Displacement
44.4
>20: high performance

Sail Area / Displacement Ratio

A measure of the power of the sails relative to the weight of the boat. The higher the number, the higher the performance, but the harder the boat will be to handle. This ratio is a "non-dimensional" value that facilitates comparisons between boats of different types and sizes. Read more.

Formula

SA/D = SA ÷ (D ÷ 64)2/3

  • SA: Sail area in square feet, derived by adding the mainsail area to 100% of the foretriangle area (the lateral area above the deck between the mast and the forestay).
  • D: Displacement in pounds.
44.43
<16: under powered
16-20: good performance
>20: high performance
Ballast/Displacement
?

Ballast / Displacement Ratio

A measure of the stability of a boat's hull that suggests how well a monohull will stand up to its sails. The ballast displacement ratio indicates how much of the weight of a boat is placed for maximum stability against capsizing and is an indicator of stiffness and resistance to capsize.

Formula

Ballast / Displacement * 100

?
<40: less stiff, less powerful
>40: stiffer, more powerful
Displacement/Length
48.3
<100: Ultralight

Displacement / Length Ratio

A measure of the weight of the boat relative to it's length at the waterline. The higher a boat’s D/L ratio, the more easily it will carry a load and the more comfortable its motion will be. The lower a boat's ratio is, the less power it takes to drive the boat to its nominal hull speed or beyond. Read more.

Formula

D/L = (D ÷ 2240) ÷ (0.01 x LWL)³

  • D: Displacement of the boat in pounds.
  • LWL: Waterline length in feet
48.26
<100: ultralight
100-200: light
200-300: moderate
300-400: heavy
>400: very heavy
Comfort Ratio
4.1
<20: lightweight racing boat

Comfort Ratio

This ratio assess how quickly and abruptly a boat’s hull reacts to waves in a significant seaway, these being the elements of a boat’s motion most likely to cause seasickness. Read more.

Formula

Comfort ratio = D ÷ (.65 x (.7 LWL + .3 LOA) x Beam1.33)

  • D: Displacement of the boat in pounds
  • LWL: Waterline length in feet
  • LOA: Length overall in feet
  • Beam: Width of boat at the widest point in feet
4.14
<20: lightweight racing boat
20-30: coastal cruiser
30-40: moderate bluewater cruising boat
40-50: heavy bluewater boat
>50: extremely heavy bluewater boat
Capsize Screening
3.0
>2.0: better suited for coastal cruising

Capsize Screening Formula

This formula attempts to indicate whether a given boat might be too wide and light to readily right itself after being overturned in extreme conditions. Read more.

Formula

CSV = Beam ÷ ³√(D / 64)

  • Beam: Width of boat at the widest point in feet
  • D: Displacement of the boat in pounds
3.02
<2: better suited for ocean passages
>2: better suited for coastal cruising

Notes

Same as the BUCCANEER 18.
When Gloucester Yachts purchased the molds for the BUCCANEER 18 in the mid 1980’s, they renamed it the GLOUCESTER 18.

BUCCANEER 18 PRODUCTION HISTORY:
Chrysler Corporation - 1968 thru 1980, hull #1 thru approx. #4050. (Just over 4000 boats built).
Texas Marine International (TMI) - 1981 thru 1982, hull approx. #4051 thru approx. #4750. (Around 700 boats built).
Wellcraft Marine Corporation, Starwind Division - 1982 thru 1984, hull approx. #4751 thru approx. #5000. (Approx. 250 boats built).
Gloucester Yachts - 1985 thru 1986, hull #5001 thru #5059. (59 boats built).
Cardinal Yachts - 1987 thru present, hull #5060 thru #5065, #5100 thru #5106 and #5200 thru #5214. (28 boats built).

Nickels Boatworks is current builder. (2008)

Not the same as another GLOUCESTER 18 (aka WHITECAP), designed by Harry Sindle, and also built by Gloucester Yachts.

For Sale

Have a sailboat to sell?
List it for free and it will show up here.
Advertisement

Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.

We will occasionally send you relevant updates. You can opt out or contact us any time.
Measurements:

©2024 Sea Time Tech, LLC

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.