Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.

We will occasionally send you relevant updates. You can opt out or contact us any time.

Morgan 45 (S&J)

1976 — 1989
Designer
Charles Morgan
Builder
Starratt & Jenks
Associations
?
# Built
?
Hull
Monohull
Keel
Fin
Rudder
?
Construction
FG

Dimensions

Length Overall
45 8 / 13.9 m
Waterline Length
31 5 / 9.6 m
Beam
10 11 / 3.4 m
Draft
6 1 / 1.9 m
Displacement
25,000 lb / 11,340 kg
Ballast
12,000 lb / 5,443 kg (Lead)
  • 1 / 6
    Virgin Islands, St John, VI
    1978 Morgan 45 (S&J)
    $52,000 USD
  • 2 / 6
    Virgin Islands, St John, VI
    1978 Morgan 45 (S&J)
    $52,000 USD
  • 3 / 6
    Virgin Islands, St John, VI
    1978 Morgan 45 (S&J)
    $52,000 USD
  • 4 / 6
    Virgin Islands, St John, VI
    1978 Morgan 45 (S&J)
    $52,000 USD
  • 5 / 6
    Virgin Islands, St John, VI
    1978 Morgan 45 (S&J)
    $52,000 USD
  • 6 / 6
    Virgin Islands, St John, VI
    1978 Morgan 45 (S&J)
    $52,000 USD

Rig and Sails

Type
Sloop
Reported Sail Area
894′² / 83.1 m²
Total Sail Area
894′² / 83 m²
Mainsail
Sail Area
452′² / 42 m²
P
44 5 / 13.6 m
E
20 3 / 6.2 m
Air Draft
?
Foresail
Sail Area
442′² / 41.1 m²
I
50 5 / 15.4 m
J
17 5 / 5.3 m
Forestay Length
53 5 / 16.3 m

Auxilary Power

Make
?
Model
?
HP
?
Fuel Type
?
Fuel Capacity
?

Accomodations

Water Capacity
?
Holding Tank Capacity
?
Headroom
?
Cabins
?

Calculations

Hull Speed
7.4 kn
Classic: 7.51 kn

Hull Speed

The theoretical maximum speed that a displacement hull can move efficiently through the water is determined by it's waterline length and displacement. It may be unable to reach this speed if the boat is underpowered or heavily loaded, though it may exceed this speed given enough power. Read more.

Formula

Classic hull speed formula:

Hull Speed = 1.34 x √LWL

A more accurate formula devised by Dave Gerr in The Propeller Handbook replaces the Speed/Length ratio constant of 1.34 with a calculation based on the Displacement/Length ratio.

Max Speed/Length ratio = 8.26 ÷ Displacement/Length ratio.311
Hull Speed = Max Speed/Length ratio x √LWL

7.43 knots
Classic formula: 7.51 knots
Sail Area/Displacement
16.7
16-20: good performance

Sail Area / Displacement Ratio

A measure of the power of the sails relative to the weight of the boat. The higher the number, the higher the performance, but the harder the boat will be to handle. This ratio is a "non-dimensional" value that facilitates comparisons between boats of different types and sizes. Read more.

Formula

SA/D = SA ÷ (D ÷ 64)2/3

  • SA: Sail area in square feet, derived by adding the mainsail area to 100% of the foretriangle area (the lateral area above the deck between the mast and the forestay).
  • D: Displacement in pounds.
16.73
<16: under powered
16-20: good performance
>20: high performance
Ballast/Displacement
48.0
>40: stiffer, more powerful

Ballast / Displacement Ratio

A measure of the stability of a boat's hull that suggests how well a monohull will stand up to its sails. The ballast displacement ratio indicates how much of the weight of a boat is placed for maximum stability against capsizing and is an indicator of stiffness and resistance to capsize.

Formula

Ballast / Displacement * 100

48.0
<40: less stiff, less powerful
>40: stiffer, more powerful
Displacement/Length
359.5
300-400: heavy

Displacement / Length Ratio

A measure of the weight of the boat relative to it's length at the waterline. The higher a boat’s D/L ratio, the more easily it will carry a load and the more comfortable its motion will be. The lower a boat's ratio is, the less power it takes to drive the boat to its nominal hull speed or beyond. Read more.

Formula

D/L = (D ÷ 2240) ÷ (0.01 x LWL)³

  • D: Displacement of the boat in pounds.
  • LWL: Waterline length in feet
359.46
<100: ultralight
100-200: light
200-300: moderate
300-400: heavy
>400: very heavy
Comfort Ratio
44.1
40-50: heavy bluewater boat

Comfort Ratio

This ratio assess how quickly and abruptly a boat’s hull reacts to waves in a significant seaway, these being the elements of a boat’s motion most likely to cause seasickness. Read more.

Formula

Comfort ratio = D ÷ (.65 x (.7 LWL + .3 LOA) x Beam1.33)

  • D: Displacement of the boat in pounds
  • LWL: Waterline length in feet
  • LOA: Length overall in feet
  • Beam: Width of boat at the widest point in feet
44.12
<20: lightweight racing boat
20-30: coastal cruiser
30-40: moderate bluewater cruising boat
40-50: heavy bluewater boat
>50: extremely heavy bluewater boat
Capsize Screening
1.5
<2.0: better suited for ocean passages

Capsize Screening Formula

This formula attempts to indicate whether a given boat might be too wide and light to readily right itself after being overturned in extreme conditions. Read more.

Formula

CSV = Beam ÷ ³√(D / 64)

  • Beam: Width of boat at the widest point in feet
  • D: Displacement of the boat in pounds
1.5
<2: better suited for ocean passages
>2: better suited for coastal cruising

Notes

This is the same hull as the MORGAN 45-1. Starratt & Jenks must have aquired the molds from which these boats were produced, and seems to have sold them mostly as kits to be finished by others. Both aft and center cockpit versions were available.
Yet another center cockpit, ‘split sheer’ version, (based on the same hull) was offered as the JENKS 45.

Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.

We will occasionally send you relevant updates. You can opt out or contact us any time.
Measurements:

©2024 Sea Time Tech, LLC

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.