Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.

We will occasionally send you relevant updates. You can opt out or contact us any time.
  • 1 / 9
  • 2 / 9
  • 3 / 9
  • 4 / 9
  • 5 / 9
  • 6 / 9
  • 7 / 9
  • 8 / 9
  • 9 / 9

1977 Pearson 10 Meter

Listed
Expired
$15,500 USD

Seller's Description

Description:

Swift on the water, moves easily in a light breeze, and the tiller steering gives wonderful feedback through the rudder. In rough seas, this Pearson will take a beating and remain faithfully upright. A capable racer, cruiser, or bluewater vessel.

Hull # 103 is an important distinction. This was one of the first Pearson 10m built with fully integrated and upgraded chain plates. Additionally, the mast has been reseated and raised out of the bilge waterline.

There is an electric autopilot that comes with the boat as well as a windvane auto pilot (both not installed).

The interior is largely original, clean, and ready for use. The marine climate control system, heat and A/C, keeps the boat comfortable in all conditions.

We have loved spending weekends on the boat and sleep soundly in the V berth. She has tankage for 40 gallons of fresh water in two 20 gallon tanks underneath the starboard and port settes. Black tank has been removed to allow for additional stowage under the v berth. The composting head requires no black tank. You could move aboard immediately and be comfortable.

Currently docked in a prime slip, in a gated marina, on Clearlake in Kemah. Liveaboards are welcome, and the slip can go with the boat.

The diesel runs, hasn’t been used regularly in recent years, but willingly cranked up with a fresh battery and fuel. The fuel tank has been cleaned. It’s time for some maintenance: oil change, filters, impeller, etc. It is a 3 cylinder Universal Diesel with just 659 hours of use.

Boat is in great condition, overall. As with any vessel, there is work to be done and maintenance to perform.

Bottom job was done in 2017; she is due for cleaning below the waterline. Thru-hulls were resealed and replaced at the same time. Bilge pumps function.

The decks, sole, and hull are solid. There is some cosmetic damage to the rubrail that should be addressed. Minor stress cracks exist only sparingly in the gel coat. Plenty more to say. Just contact me.

Equipment: Roller furling jib Garmin GPS Whisker pole Spinnaker Electronic auto pilot Wind vane auto pilot Marine Air conditioning and heat Propane stove Composting head Wet head 12v power system 2 anchors

Specs

Designers
?
Builders
?
Associations
?
# Built
?
Hull
Monohull
Keel
?
Rudder
?
Construction
?

Dimensions

Length Overall
33 0 / 10.1 m
Waterline Length
?
Beam
10 11 / 3.4 m
Draft
5 10 / 1.8 m
Displacement
?
Ballast
?

Rig and Sails

Type
?
Reported Sail Area
?
Total Sail Area
?
Mainsail
Sail Area
?
P
?
E
?
Air Draft
?
Foresail
Sail Area
?
I
?
J
?
Forestay Length
?

Auxilary Power

Make
?
Model
?
HP
?
Fuel Type
?
Fuel Capacity
?
Engine Hours
?

Accomodations

Water Capacity
?
Holding Tank Capacity
?
Headroom
?
Cabins
1

Calculations

Hull Speed
?

Hull Speed

The theoretical maximum speed that a displacement hull can move efficiently through the water is determined by it's waterline length and displacement. It may be unable to reach this speed if the boat is underpowered or heavily loaded, though it may exceed this speed given enough power. Read more.

Formula

Classic hull speed formula:

Hull Speed = 1.34 x √LWL

A more accurate formula devised by Dave Gerr in The Propeller Handbook replaces the Speed/Length ratio constant of 1.34 with a calculation based on the Displacement/Length ratio.

Max Speed/Length ratio = 8.26 ÷ Displacement/Length ratio.311
Hull Speed = Max Speed/Length ratio x √LWL

?
Classic formula: ?
Sail Area/Displacement
?

Sail Area / Displacement Ratio

A measure of the power of the sails relative to the weight of the boat. The higher the number, the higher the performance, but the harder the boat will be to handle. This ratio is a "non-dimensional" value that facilitates comparisons between boats of different types and sizes. Read more.

Formula

SA/D = SA ÷ (D ÷ 64)2/3

  • SA: Sail area in square feet, derived by adding the mainsail area to 100% of the foretriangle area (the lateral area above the deck between the mast and the forestay).
  • D: Displacement in pounds.
?
<16: under powered
16-20: good performance
>20: high performance
Ballast/Displacement
?

Ballast / Displacement Ratio

A measure of the stability of a boat's hull that suggests how well a monohull will stand up to its sails. The ballast displacement ratio indicates how much of the weight of a boat is placed for maximum stability against capsizing and is an indicator of stiffness and resistance to capsize.

Formula

Ballast / Displacement * 100

?
<40: less stiff, less powerful
>40: stiffer, more powerful
Displacement/Length
?

Displacement / Length Ratio

A measure of the weight of the boat relative to it's length at the waterline. The higher a boat’s D/L ratio, the more easily it will carry a load and the more comfortable its motion will be. The lower a boat's ratio is, the less power it takes to drive the boat to its nominal hull speed or beyond. Read more.

Formula

D/L = (D ÷ 2240) ÷ (0.01 x LWL)³

  • D: Displacement of the boat in pounds.
  • LWL: Waterline length in feet
?
<100: ultralight
100-200: light
200-300: moderate
300-400: heavy
>400: very heavy
Comfort Ratio
?

Comfort Ratio

This ratio assess how quickly and abruptly a boat’s hull reacts to waves in a significant seaway, these being the elements of a boat’s motion most likely to cause seasickness. Read more.

Formula

Comfort ratio = D ÷ (.65 x (.7 LWL + .3 LOA) x Beam1.33)

  • D: Displacement of the boat in pounds
  • LWL: Waterline length in feet
  • LOA: Length overall in feet
  • Beam: Width of boat at the widest point in feet
?
<20: lightweight racing boat
20-30: coastal cruiser
30-40: moderate bluewater cruising boat
40-50: heavy bluewater boat
>50: extremely heavy bluewater boat
Capsize Screening
?

Capsize Screening Formula

This formula attempts to indicate whether a given boat might be too wide and light to readily right itself after being overturned in extreme conditions. Read more.

Formula

CSV = Beam ÷ ³√(D / 64)

  • Beam: Width of boat at the widest point in feet
  • D: Displacement of the boat in pounds
?
<2: better suited for ocean passages
>2: better suited for coastal cruising

This listing is presented by SailboatListings.com. Visit their website for more information or to contact the seller.

View on SailboatListings.com


Embed

Embed

Embed this page on your own website by copying and pasting this code.

Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.

We will occasionally send you relevant updates. You can opt out or contact us any time.
Measurements:

©2024 Sea Time Tech, LLC

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.