Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.

We will occasionally send you relevant updates. You can opt out or contact us any time.
  • 1 / 16
  • 2 / 16
  • 3 / 16
  • 4 / 16
  • 5 / 16
  • 6 / 16
  • 7 / 16
  • 8 / 16
  • 9 / 16
  • 10 / 16
  • 11 / 16
  • 12 / 16
  • 13 / 16
  • 14 / 16
  • 15 / 16
  • 16 / 16

Seller's Description

Please contact me for a more complete inventory.

“China Doll” is a Stan Huntingford double-ender designed for comfortable, safe, and seaworthy long-distance cruising. She features a dual-cockpit design that provides an aft cockpit from the master cabin and a center cockpit for everyone’s use. She is fully equipped for offshore cruising.

This was the second of the eight built. Passport is a semi-custom builder that the boat’s first owner took great advantage of. He was a very experienced sailor and a competent engineer. Many of his requests were included in subsequent builds.

These boats have a reputation of being very beautiful, well-built, and practical.

  • 160 gal. aluminum fuel tanks (four below the cabin sole and one 30 gal. under the aft cockpit (2011)
  • 230 gal. in two stainless steel water tanks under the cabin sole
  • 12 gal. water heater (110v or engine)
  • Two 9 gal. polyethylene holding tank

Equipment: - Ocean Industries DCII electrical panel with AC and DC ammeters and voltmeters - AC main breaker with polarity indicator Batteries - Two Group 27 West Marine 15020126 flooded lead acid starting batteries located to starboard in the engine compartment (2021) - Four Group L16 Full River DC400 415 AH batteries located on the port side in the engine compartment (2021) - One Trojan U1-AGM 34 AH for generator start located port in the engine compartments - NAPA marine/RV deep cycle battery for the windlass (2023) - Northern Lights Model E673L 6 kW diesel generator (2013) - Magnum Energy MS2012 2000W with 100 amp charger12V Pure Sine Inverter/Charger (2021) - Kyocera Model KC85TS 87-watt solar panel - Blue Sky solar charge controller, Solar Boost 3024i - Magnum Energy state-of-charge voltage monitors - Blue Sky IPN-Pro remote, switched digital, state-of-charge, and Solar voltage monitors (2008) - 50 amp 120/240-volt shore power inlet port side of cockpit and cord - AC and DC power distribution panel with rev. polarity indicator - GFCI protection for galley, heads, and other wet areas

Specs

Designers
?
Builders
?
Associations
?
# Built
?
Hull
Monohull
Keel
?
Rudder
?
Construction
?

Dimensions

Length Overall
51 1 / 15.6 m
Waterline Length
?
Beam
14 6 / 4.4 m
Draft
7 1 / 2.2 m
Displacement
?
Ballast
?

Rig and Sails

Type
?
Reported Sail Area
?
Total Sail Area
?
Mainsail
Sail Area
?
P
?
E
?
Air Draft
?
Foresail
Sail Area
?
I
?
J
?
Forestay Length
?

Auxilary Power

Make
?
Model
?
HP
?
Fuel Type
?
Fuel Capacity
?
Engine Hours
?

Accomodations

Water Capacity
?
Holding Tank Capacity
?
Headroom
?
Cabins
2

Calculations

Hull Speed
?

Hull Speed

The theoretical maximum speed that a displacement hull can move efficiently through the water is determined by it's waterline length and displacement. It may be unable to reach this speed if the boat is underpowered or heavily loaded, though it may exceed this speed given enough power. Read more.

Formula

Classic hull speed formula:

Hull Speed = 1.34 x √LWL

A more accurate formula devised by Dave Gerr in The Propeller Handbook replaces the Speed/Length ratio constant of 1.34 with a calculation based on the Displacement/Length ratio.

Max Speed/Length ratio = 8.26 ÷ Displacement/Length ratio.311
Hull Speed = Max Speed/Length ratio x √LWL

?
Classic formula: ?
Sail Area/Displacement
?

Sail Area / Displacement Ratio

A measure of the power of the sails relative to the weight of the boat. The higher the number, the higher the performance, but the harder the boat will be to handle. This ratio is a "non-dimensional" value that facilitates comparisons between boats of different types and sizes. Read more.

Formula

SA/D = SA ÷ (D ÷ 64)2/3

  • SA: Sail area in square feet, derived by adding the mainsail area to 100% of the foretriangle area (the lateral area above the deck between the mast and the forestay).
  • D: Displacement in pounds.
?
<16: under powered
16-20: good performance
>20: high performance
Ballast/Displacement
?

Ballast / Displacement Ratio

A measure of the stability of a boat's hull that suggests how well a monohull will stand up to its sails. The ballast displacement ratio indicates how much of the weight of a boat is placed for maximum stability against capsizing and is an indicator of stiffness and resistance to capsize.

Formula

Ballast / Displacement * 100

?
<40: less stiff, less powerful
>40: stiffer, more powerful
Displacement/Length
?

Displacement / Length Ratio

A measure of the weight of the boat relative to it's length at the waterline. The higher a boat’s D/L ratio, the more easily it will carry a load and the more comfortable its motion will be. The lower a boat's ratio is, the less power it takes to drive the boat to its nominal hull speed or beyond. Read more.

Formula

D/L = (D ÷ 2240) ÷ (0.01 x LWL)³

  • D: Displacement of the boat in pounds.
  • LWL: Waterline length in feet
?
<100: ultralight
100-200: light
200-300: moderate
300-400: heavy
>400: very heavy
Comfort Ratio
?

Comfort Ratio

This ratio assess how quickly and abruptly a boat’s hull reacts to waves in a significant seaway, these being the elements of a boat’s motion most likely to cause seasickness. Read more.

Formula

Comfort ratio = D ÷ (.65 x (.7 LWL + .3 LOA) x Beam1.33)

  • D: Displacement of the boat in pounds
  • LWL: Waterline length in feet
  • LOA: Length overall in feet
  • Beam: Width of boat at the widest point in feet
?
<20: lightweight racing boat
20-30: coastal cruiser
30-40: moderate bluewater cruising boat
40-50: heavy bluewater boat
>50: extremely heavy bluewater boat
Capsize Screening
?

Capsize Screening Formula

This formula attempts to indicate whether a given boat might be too wide and light to readily right itself after being overturned in extreme conditions. Read more.

Formula

CSV = Beam ÷ ³√(D / 64)

  • Beam: Width of boat at the widest point in feet
  • D: Displacement of the boat in pounds
?
<2: better suited for ocean passages
>2: better suited for coastal cruising

This listing is presented by SailboatListings.com. Visit their website for more information or to contact the seller.

View on SailboatListings.com


Embed

Embed

Embed this page on your own website by copying and pasting this code.

Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.

We will occasionally send you relevant updates. You can opt out or contact us any time.
Measurements:

©2025 Sea Time Tech, LLC

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.