Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.
Among pilothouse sailboats, the Nauticat 37 is considered one of the best designs with an attractive profile and roomy interior while offering respectable sailing performance. Solidly built in Finland in 2003 by Nauticat Shipyard (previously Siltala Yachts) in high quality European workmanship in build-quality and joinery. Three Rivers is a comfortable blue water sailboat ideal for extended cruises or live-aboard. Her large pilothouse with a raised saloon provides a bright living space with excellent all-around visibility, also perfect for keeping watches and navigating in the open seas in safety and comfort. Featuring a large aft-stateroom, a V-berth, and two heads, a saloon and galley, the NC37 has comparable living space as many 40 footers. Although a 2003 model, commissioning for this boat was finished in 2008, as evidenced by factory sign-off papers. Her previous owners sailed her across the Atlantic 10 years ago, and she has been lightly used since. I bought her three years ago. She has been diligently maintained and is in very good condition, with many recent upgrades and refurbishments.
Equipment: Newly overhauled Yanmar 56, 830W new solar panel, watermaker, in-mast furling, bow thruster, 2 fridges, Starlink, full instruments, full awnings,…
See this document for more details
More pictures: photos.app.goo.gl/khmnczf48KFbv9J36
The theoretical maximum speed that a displacement hull can move efficiently through the water is determined by it's waterline length and displacement. It may be unable to reach this speed if the boat is underpowered or heavily loaded, though it may exceed this speed given enough power. Read more.
Classic hull speed formula:
Hull Speed = 1.34 x √LWL
A more accurate formula devised by Dave Gerr in The Propeller Handbook replaces the Speed/Length ratio constant of 1.34 with a calculation based on the Displacement/Length ratio.
Max Speed/Length ratio = 8.26 ÷ Displacement/Length ratio.311
Hull Speed = Max Speed/Length ratio x √LWL
A measure of the power of the sails relative to the weight of the boat. The higher the number, the higher the performance, but the harder the boat will be to handle. This ratio is a "non-dimensional" value that facilitates comparisons between boats of different types and sizes. Read more.
SA/D = SA ÷ (D ÷ 64)2/3
A measure of the stability of a boat's hull that suggests how well a monohull will stand up to its sails. The ballast displacement ratio indicates how much of the weight of a boat is placed for maximum stability against capsizing and is an indicator of stiffness and resistance to capsize.
Ballast / Displacement * 100
A measure of the weight of the boat relative to it's length at the waterline. The higher a boat’s D/L ratio, the more easily it will carry a load and the more comfortable its motion will be. The lower a boat's ratio is, the less power it takes to drive the boat to its nominal hull speed or beyond. Read more.
D/L = (D ÷ 2240) ÷ (0.01 x LWL)³
This ratio assess how quickly and abruptly a boat’s hull reacts to waves in a significant seaway, these being the elements of a boat’s motion most likely to cause seasickness. Read more.
Comfort ratio = D ÷ (.65 x (.7 LWL + .3 LOA) x Beam1.33)
This formula attempts to indicate whether a given boat might be too wide and light to readily right itself after being overturned in extreme conditions. Read more.
CSV = Beam ÷ ³√(D / 64)
This listing is presented by SailboatListings.com. Visit their website for more information or to contact the seller.
Great choice! Your favorites are temporarily saved for this session. Sign in to save them permanently, access them on any device, and receive relevant alerts.
©2025 Sea Time Tech, LLC
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.